Solving elliptic eigenvalue problems on polygonal meshes using discontinuous Galerkin composite finite element methods
نویسنده
چکیده
In this paper we introduce a discontinuous Galerkin method on polygonal meshes. This method arises from the Discontinuous Galerkin Composite Finite Element Method (DGFEM) for source problems on domains with micro-structures. In the context of the present paper, the flexibility of DGFEM is applied to handle polygonal meshes. We prove the a priori convergence of the method for both eigenvalues and eigenfunctions for elliptic eigenvalue problems. Numerical experiments highlighting the performance of the proposed methods for problems with discontinuous coefficients and on convex and non-convex polygonal meshes are presented.
منابع مشابه
A FETI-DP Preconditioner for a Composite Finite Element and Discontinuous Galerkin Method
In this paper a Nitsche-type discretization based on discontinuous Galerkin (DG) method for an elliptic two-dimensional problem with discontinuous coefficients is considered. The problem is posed on a polygonal region Ω which is a union of N disjoint polygonal subdomains Ωi of diameter O(Hi). The discontinuities of the coefficients, possibly very large, are assumed to occur only across the subd...
متن کاملInterior penalty discontinuous Galerkin method on very general polygonal and polyhedral meshes
Abstract. This paper provides a theoretical foundation for interior penalty discontinuous Galerkin methods for second order elliptic equations on very general polygonal or polyhedral meshes. The mesh can be composed of any polygons or polyhedra which satisfies certain shape regularity conditions characterized in a recent paper by two of the authors in [18]. The usual H conforming finite element...
متن کاملDiscontinuous Galerkin FEM for Elliptic Problems in Polygonal Domains (Abstract)
The present work is concerned with the analysis of the Discontinuous Galerkin Finite Element Method (DGFEM) for linear • diffusion problems, • elasticity problems,
متن کامل] 2011 - 04 Rellich - type Discrete Compactness for Some Discontinuous Galerkin FEM ∗
We deduce discrete compactness of Rellich type for some discontinuous Galerkin finite element methods (DGFEM) including hybrid ones, under fairly general settings on the triangulations and the finite element spaces. We make use of regularity of the solutions to an auxiliary second-order elliptic boundary value problem as well as the error estimates of the associated finite element solutions. Th...
متن کاملImmersed Finite Element Methods for Elliptic Interface Problems with Non-homogeneous Jump Conditions
Abstract. This paper is to develop immersed finite element (IFE) functions for solving second order elliptic boundary value problems with discontinuous coefficients and non-homogeneous jump conditions. These IFE functions can be formed on meshes independent of interface. Numerical examples demonstrate that these IFE functions have the usual approximation capability expected from polynomials emp...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Applied Mathematics and Computation
دوره 267 شماره
صفحات -
تاریخ انتشار 2015